Contents

1.7B NYC Taxi rides test: Clickhouse vs Elasticsearch vs Manticore Search

Intro

NYC taxi rides is probably the most commonly used benchmark in the area of data analytics.

It started with Todd W. Schneider deciding to prepare the collection first in 2015 to analyze 1.1 billion NYC Taxi and Uber Trips. Then Mark Litwintschik continued by testing lots of databases and search engines using the data collection.

Now we at https://db-benchmarks.com/ :

Data collection

The data collection constitutes 1.7B taxi and for-hire vehicle (Uber, Lyft, etc.) trips originating in New York City since 2009. Most of the raw data comes from the NYC Taxi & Limousine Commission.

The data collection record includes a lot of different attributes of a taxi ride:

  • pickup date and time
  • coordinates of pickup and dropoff
  • pickup and dropoff location names
  • fee and tip amount
  • wind speed, snow depth
  • and many other fields

It can be used mostly for testing analytical queries, but it also includes a couple of full-text fields that can be used to test free text capabilities of databases.

The whole list of fields and their data types is:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
       "properties": {
         "vendor_id": {"type": "keyword"},
         "pickup_datetime": {"type": "date", "format": "epoch_second"},
         "dropoff_datetime": {"type": "date", "format": "epoch_second"},
         "store_and_fwd_flag": {"type": "keyword"},
         "rate_code_id": {"type": "integer"},
         "pickup_longitude": {"type": "float"},
         "pickup_latitude": {"type": "float"},
         "dropoff_longitude": {"type": "float"},
         "dropoff_latitude": {"type": "float"},
         "passenger_count": {"type": "integer"},
         "trip_distance": {"type": "float"},
         "fare_amount": {"type": "float"},
         "extra": {"type": "float"},
         "mta_tax": {"type": "float"},
         "tip_amount": {"type": "float"},
         "tolls_amount": {"type": "float"},
         "ehail_fee": {"type": "float"},
         "improvement_surcharge": {"type": "float"},
         "total_amount": {"type": "float"},
         "payment_type": {"type": "keyword"},
         "trip_type": {"type": "byte"},
         "pickup": {"type": "keyword"},
         "dropoff": {"type": "keyword"},
         "cab_type": {"type": "keyword"},
         "rain": {"type": "float"},
         "snow_depth": {"type": "float"},
         "snowfall": {"type": "float"},
         "max_temp": {"type": "byte"},
         "min_temp": {"type": "byte"},
         "wind": {"type": "float"},
         "pickup_nyct2010_gid": {"type": "integer"},
         "pickup_ctlabel": {"type": "keyword"},
         "pickup_borocode": {"type": "byte"},
         "pickup_boroname": {"type": "keyword"},
         "pickup_ct2010": {"type": "keyword"},
         "pickup_boroct2010": {"type": "keyword"},
         "pickup_cdeligibil": {"type": "keyword"},
         "pickup_ntacode": {"type": "keyword"},
         "pickup_ntaname": {"type": "text", "fields": {"raw": {"type":"keyword"}}},
         "pickup_puma": {"type": "keyword"},
         "dropoff_nyct2010_gid": {"type": "integer"},
         "dropoff_ctlabel": {"type": "keyword"},
         "dropoff_borocode": {"type": "byte"},
         "dropoff_boroname": {"type": "keyword"},
         "dropoff_ct2010": {"type": "keyword"},
         "dropoff_boroct2010": {"type": "keyword"},
         "dropoff_cdeligibil": {"type": "keyword"},
         "dropoff_ntacode": {"type": "keyword"},
         "dropoff_ntaname": {"type": "text", "fields": {"raw": {"type":"keyword"}}},
         "dropoff_puma": {"type": "keyword"}
       }

Databases

So far we have made this test available for 3 databases:

In this test we make as little changes to database default settings as possible to not give either of them an unfair advantage. Testing at max tuning is no less important, but it’s a subject for another benchmark. Here we want to understand what latency a regular non-experienced user can get after just installing a database and running it with its default settings. But to make it fair to compare one with another we still had to change a few settings:

  • Clickhouse: no tuning , just CREATE TABLE ... ENGINE = MergeTree() ORDER BY id and standard clickhouse-server docker image.
  • Elasticsearch: here to make it fair to compare with the other databases we had to help Elasticsearch by:
  • Manticore Search is also used in a form of their official docker image + the columnar library they provide :
    • as well as with Elasticsearch we also use 32 shards in a form of 32 plain indexes
    • and we use Manticore columnar storage since comparing Manticore’s default row-wise storage vs Clickhouse’s and Elasticsearch’s columnar storages would be not fair on such a large data collection.
    • we added secondary_indexes = 1 to the config which enables secondary indexes while filtering (when loading data that’s built anyway). Since Elasticsearch uses secondary indexes by default and it’s fairly easy to enable the same in Manticore it makes sense to do it. Unfortunately in Clickhouse user would have to make quite an effort to do the same, hence it’s not done, since it would then be considered a heavy tuning which would then require further tuning of the other databases which would make things too complicated and unfair.

About caches

We’ve also configured the databases to not use any internal caches. Why this is important:

  1. In this benchmark, we conduct an accurate latency measurement to find out what response time users can expect if they run one of the tested queries at a random moment, not after running the same query many times consequently.
  2. Any cache is a shortcut to low latency. As written in Wikipedia “cache stores data so that future requests for that data can be served faster”. But caches are different, they can be divided into 2 main groups:
    • đź‘Ś those that just cache raw data stored on disk. For example many databases use mmap() to map the data stored on disk to memory, access it easily and let the operating system take care about the rest (reading it from disk when there’s free memory, removing it from memory when it’s needed for something more important etc). This is ok in terms of performance testing, because we let each database leverage the benefit of using the OS page cache (or its internal similar cache that just reads data from disk) That’s exactly what we do in this benchmark.

    • âť— those that are used to save results of previous calculations. And it’s fine in many cases, but in terms of this benchmark letting database enable such a cache is a bad idea, because:

      • it breaks proper measuring: instead of measuring calculation time you start measuring how long it takes to find a value by a key in memory. It’s not something we want to do in this test (but it’s interesting in general and we’ll perhaps do it in the future and publish some article “Benchmark of caches”).
      • even if they save not a full result of a particular query, but results of its sub-calculations it’s not good, because it breaks the idea of the test - “what response time users can expect if they run one of the tested queries at a random moment”.
      • some databases have such a cache (it’s usually called “query cache”), others don’t so if we don’t disable database internal caches we’ll give an unfair advantage to those having that.

      So we do everything to make sure none of the database does this kind of caching.

What exactly we do to achieve that:

  • Clickhouse:
    • SYSTEM DROP MARK CACHE, SYSTEM DROP UNCOMPRESSED CACHE, SYSTEM DROP COMPILED EXPRESSION CACHE before testing each new query (not each attempt of the same query).
  • Elasticsearch:
    • "index.queries.cache.enabled": false in its configuration
    • /_cache/clear?request=true&query=true&fielddata=true before testing each new query (not each attempt of the same query).
  • Manticore Search (in configuration file):
    • qcache_max_bytes = 0
    • docstore_cache_size = 0
  • Operating system:
    • we do echo 3 > /proc/sys/vm/drop_caches; sync before each NEW query (NOT each attempt). I.e. for each new query we:
      • stop database
      • drop OS cache
      • start it back
      • make the very first cold query and measure its time
      • and make tens more attempts (up to 100 or until the coefficient of variation is low enough to consider the test results high quality)

Queries

The queries are mostly analytical queries that do filtering, sorting and grouping. We’ve also included one full-text query:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
[
  {
    "default": "SELECT count(*) FROM taxi where pickup_ntaname = '0'",
    "quickwit": {
      "path": "/api/v1/taxi/search/",
      "query": {
        "query": "pickup_ntaname:\"0\"",
        "max_hits": 0,
        "aggs": {
          "count(*)": {
            "value_count": {
              "field": "id"
            }
          }
        }
      },
      "retrieve": null,
      "mapping": null
    }
  },
  {
    "default": "SELECT pickup_ntaname, count(*) c FROM taxi GROUP BY pickup_ntaname ORDER BY c desc limit 20",
    "quickwit": {
      "path": "/api/v1/taxi/search/",
      "query": {
        "query": "*",
        "max_hits": 0,
        "aggs": {
          "pickup_ntaname_aggregation": {
            "terms": {
              "field": "pickup_ntaname",
              "size": 20,
              "order": {
                "_count": "desc"
              }
            }
          }
        }
      },
      "retrieve": null,
      "mapping": {
        "pickup_ntaname_aggregation": {
          "buckets": {
            "[]": {
              "doc_count": "c: int",
              "key": "pickup_ntaname"
            }
          }
        }
      }
    }
  },
  {
    "default": "SELECT cab_type, count(*) c FROM taxi GROUP BY cab_type order by c desc LIMIT 20",
    "quickwit": {
      "path": "/api/v1/taxi/search/",
      "query": {
        "query": "*",
        "max_hits": 0,
        "aggs": {
          "cab_type_aggregation": {
            "terms": {
              "field": "cab_type",
              "size": 20,
              "order": {
                "_count": "desc"
              }
            }
          }
        }
      },
      "retrieve": null,
      "mapping": {
        "cab_type_aggregation": {
          "buckets": {
            "[]": {
              "doc_count": "c: int",
              "key": "cab_type"
            }
          }
        }
      }
    }
  },
  {
    "default": "SELECT passenger_count, avg(total_amount) a FROM taxi GROUP BY passenger_count order by a desc LIMIT 20",
    "quickwit": {
      "path": "/api/v1/taxi/search/",
      "query": {
        "query": "*",
        "max_hits": 0,
        "aggs": {
          "passenger_count_aggregation": {
            "terms": {
              "field": "passenger_count",
              "size": 20,
              "order": {
                "avg_total_amount": "desc"
              }
            },
            "aggs": {
              "avg_total_amount": {
                "avg": {
                  "field": "total_amount"
                }
              }
            }
          }
        }
      },
      "retrieve": null,
      "mapping": {
        "passenger_count_aggregation": {
          "buckets": {
            "[]": {
              "avg_total_amount": {
                "value": "a: float"
              },
              "doc_count": "passenger_count: int"
            }
          }
        }
      }
    }
  },
  {
    "default": "SELECT count(*) FROM taxi WHERE tip_amount > 1.5",
    "quickwit": {
      "path": "/api/v1/taxi/search/",
      "query": {
        "query": "tip_amount:>1.5",
        "max_hits": 0,
        "aggs": {
          "count(*)": {
            "value_count": {
              "field": "id"
            }
          }
        }
      },
      "retrieve": null,
      "mapping": null
    }
  },
  {
    "default": "SELECT avg(tip_amount) FROM taxi WHERE tip_amount > 1.5 AND tip_amount < 5",
    "quickwit": {
      "path": "/api/v1/taxi/search/",
      "query": {
        "query": "tip_amount:>1.5 AND tip_amount:<5",
        "max_hits": 0,
        "aggs": {
          "avg_tip_amount": {
            "avg": {
              "field": "tip_amount"
            }
          }
        }
      },
      "retrieve": null,
      "mapping": {
        "single_value": {
          "avg_tip_amount": {
            "value": "avg(tip_amount): float"
          }
        }
      }
    }
  },
  {
    "default": "SELECT rain, avg(trip_distance) a FROM taxi GROUP BY rain order by a desc LIMIT 20",
    "quickwit": {
      "path": "/api/v1/taxi/search/",
      "query": {
        "query": "*",
        "max_hits": 0,
        "aggs": {
          "rain_aggregation": {
            "terms": {
              "field": "rain",
              "size": 20,
              "order": {
                "avg_trip_distance": "desc"
              }
            },
            "aggs": {
              "avg_trip_distance": {
                "avg": {
                  "field": "trip_distance"
                }
              }
            }
          }
        }
      },
      "retrieve": null,
      "mapping": {
        "rain_aggregation": {
          "buckets": {
            "[]": {
              "avg_trip_distance": {
                "value": "a: float"
              },
              "key": "rain"
            }
          }
        }
      }
    }
  },
  {
    "manticoresearch": "SELECT * FROM taxi where match('harlem east') LIMIT 20",
    "clickhouse": "SELECT * FROM taxi where match(dropoff_ntaname, '(?i)\\WHarlem\\WEast\\W') or match(pickup_ntaname, '(?i)\\WHarlem\\WEast\\W') LIMIT 20",
    "elasticsearch": "SELECT * FROM taxi where (match(dropoff_ntaname, 'harlem') AND match(dropoff_ntaname, 'east')) OR (match(pickup_ntaname, 'harlem') AND match(pickup_ntaname, 'east')) LIMIT 20",
    "quickwit": {
      "path": "/api/v1/taxi/search/",
      "query": {
        "query": "harlem east",
        "max_hits": 20
      },
      "retrieve": null,
      "mapping": null
    }
  },
  {
    "default": "SELECT avg(total_amount) FROM taxi WHERE trip_distance = 5",
    "quickwit": {
      "path": "/api/v1/taxi/search/",
      "query": {
        "query": "trip_distance:5",
        "max_hits": 0,
        "aggs": {
          "avg_total_amount": {
            "avg": {
              "field": "total_amount"
            }
          }
        }
      },
      "retrieve": null,
      "mapping": {
        "single_value": {
          "avg_total_amount": {
            "value": "avg(total_amount): float"
          }
        }
      }
    }
  },
  {
    "default": "SELECT avg(total_amount), count(*) FROM taxi WHERE trip_distance > 0 AND trip_distance < 5",
    "quickwit": {
      "path": "/api/v1/taxi/search/",
      "query": {
        "query": "trip_distance:>0 AND trip_distance:<5",
        "max_hits": 0,
        "aggs": {
          "avg_total_amount": {
            "avg": {
              "field": "total_amount"
            }
          },
          "count_documents": {
            "value_count": {
              "field": "trip_distance"
            }
          }
        }
      },
      "retrieve": null,
      "mapping": {
        "single_value": {
          "avg_total_amount": {
            "value": "avg(total_amount): float"
          },
          "count_documents": {
            "value": "count(*): int"
          }
        }
      }
    }
  },
  {
    "default": "SELECT count(*) FROM taxi where pickup_ntaname != '0'",
    "quickwit": {
      "path": "/api/v1/taxi/search/",
      "query": {
        "query": "-pickup_ntaname:\"0\"",
        "max_hits": 0,
        "aggs": {
          "count(*)": {
            "value_count": {
              "field": "id"
            }
          }
        }
      },
      "retrieve": null,
      "mapping": null
    }
  },
  {
    "default": "select passenger_count, count(*) c from taxi group by passenger_count order by c desc limit 20",
    "quickwit": {
      "path": "/api/v1/taxi/search/",
      "query": {
        "query": "*",
        "max_hits": 0,
        "aggs": {
          "passenger_count_aggregation": {
            "terms": {
              "field": "passenger_count",
              "size": 20,
              "order": {
                "_count": "desc"
              }
            }
          }
        }
      },
      "retrieve": null,
      "mapping": {
        "passenger_count_aggregation": {
          "buckets": {
            "[]": {
              "doc_count": "c: int",
              "key": "passenger_count"
            }
          }
        }
      }
    }
  },
  {
    "default": "select rain, count(*) c from taxi group by rain order by c desc limit 20",
    "quickwit": {
      "path": "/api/v1/taxi/search/",
      "query": {
        "query": "*",
        "max_hits": 0,
        "aggs": {
          "rain_aggregation": {
            "terms": {
              "field": "rain",
              "size": 20,
              "order": {
                "_count": "desc"
              }
            }
          }
        }
      },
      "retrieve": null,
      "mapping": {
        "rain_aggregation": {
          "buckets": {
            "[]": {
              "doc_count": "c: int",
              "key": "rain"
            }
          }
        }
      }
    }
  },
  {
    "default": "SELECT count(*) from taxi where pickup_ntaname='Upper West Side'",
    "quickwit": {
      "path": "/api/v1/taxi/search/",
      "query": {
        "query": "pickup_ntaname:\"Upper West Side\"",
        "max_hits": 0,
        "aggs": {
          "count(*)": {
            "value_count": {
              "field": "id"
            }
          }
        }
      },
      "retrieve": null,
      "mapping": null
    }
  },
  {
    "default": "SELECT * from taxi limit 5",
    "quickwit": {
      "path": "/api/v1/taxi/search/",
      "query": {
        "query": "*",
        "max_hits": 5
      },
      "retrieve": null,
      "mapping": null
    }
  },
  {
    "default": "SELECT count(*) FROM taxi WHERE tip_amount = 5",
    "quickwit": {
      "path": "/api/v1/taxi/search/",
      "query": {
        "query": "tip_amount:5",
        "max_hits": 0,
        "aggs": {
          "count(*)": {
            "value_count": {
              "field": "id"
            }
          }
        }
      },
      "retrieve": null,
      "mapping": null
    }
  },
  {
    "default": "SELECT avg(total_amount) FROM taxi",
    "quickwit": {
      "path": "/api/v1/taxi/search/",
      "query": {
        "query": "*",
        "max_hits": 0,
        "aggs": {
          "avg_total_amount": {
            "avg": {
              "field": "total_amount"
            }
          }
        }
      },
      "retrieve": null,
      "mapping": {
        "single_value": {
          "avg_total_amount": {
            "value": "avg(total_amount): float"
          }
        }
      }
    }
  }
]

Results

You can find all the results on the results page by selecting “Test: taxi”.

Remember that the only high quality metric is “Fast avg” since it guarantees low coefficient of variation and high queries count conducted for each query. The other 2 (“Fastest” and “Slowest”) are provided with no guarantee since:

  • Slowest - is a single attempt result, in most cases the very first coldest query. Even though we purge OS cache before each cold query it can’t be considered stable. So it can be used for informational purposes only (even though many benchmark authors publish such results without any disclaimer).
  • Fastest - just the very fastest result, it should be in most cases similar to the “Fast avg” metric, but can be more volatile from run to run.

Remember the tests including the results are 100% transparent as well as everything in this project, so:

Unlike other less transparent and less objective benchmarks we are not making any conclusions, we are just leaving screenshots of the results here:

3 competitors at once

/test-taxi/3.png

Clickhouse vs Elasticsearch

/test-taxi/ch_es.png

Manticore Search vs Elasticsearch

/test-taxi/ms_es.png

Manticore Search vs Clickhouse

/test-taxi/ms_ch.png

Disclaimer

The author of this test and the test framework is a member of Manticore Search core team and the test was initially made to compare Manticore Search with Elasticsearch, but as shown above and can be verified in the open source code and by running the same test yourself Manticore Search wasn’t given any unfair advantage, so the test can be considered unprejudiced. However, if something is missing or wrong (i.e. non-objective) in the test feel free to make a pull request or an issue on Github . Your take is appreciated! Thank you for spending your time reading this!